

Welcome to host_registry’s documentation!

Contents:

	README of host_registry
	Presentation

	Getting started

	Common tasks

	Notes on host_registry
	Presentation

	Typical topology

	The new fact

	Port-redirection

	Service registry

	Notes on web-app concepts
	Introduction

	The multi-user application

Indices and tables

	Index

	Module Index

	Search Page

README of host_registry

Presentation

This repository contains experimental code for replacing reverse-proxy with port-redirection.

More information under readthedocs [https://host-registry.readthedocs.io/en/latest/]

Or visit the example page blabla [https://blabla.billet.ovh]

Getting started

In a bash-terminal:

git clone https://github.com/charlyoleg/host_registry
cd host_registry
npm i
npm run start_hrs

In a second bash-terminal:

curl -k https://ZZZ.LocalHost:8443/aa

Common tasks

Update the server:

pm2 stop rediry
git pull
npm run build_hrs
pm2 restart rediry

Update the access_log-report:

npm run accesslog_html

and visit the page accesslog_report [https://accyloggy.billet.ovh]

Notes on host_registry

Presentation

This document aims at exploring possibilities to setup a website.

Typical topology

Let’s say, I want to create 5 websites with the following names:

[image: _images/5_websites.png]
I have to buy the two domain-names, beautifully.ovh and awesomely.ovh. I also have to buy a server (i.e. a computer working 24 hours a day and connected to internet), such as vps [https://www.ovhcloud.com/en/vps/], where my web-applications and databases will run.

For each domain-name I can register (almost) any sub-domains. For each sub-domain I can register a A-record (IPv4), a AAAA-record (IPv6) or a CNAME-record (i.e. an alias to an other hostanme) . The wilcard * let you provide an IP-address to all sub-domains, not explicitly registered.

[image: _images/typical_topology.png]
With this typical topology, when someone wants to visit one of the websites from his client-laptop, the following sequence happens:

	the laptop asks a DNS server the translation of the hostname of the URL

	the DNS returns the corresponding IP-address

	the laptop send the http-request to my server

	the rever-proxy listening to the standard port-numbers forwards the requests

	the web-application process the request and provides the result to the reverse-proxy

	the reverse-proxy forward the result to the laptop

[image: _images/typical_sequence.png]
By the second http-request, the two first steps are skipped, as the laptop knows already the IP-address of my server.

The reverse-proxy manages to forward the requests to the right application thanks to the destination-hostname written in the http-header. So the reverse-proxy won’t work if you replace the server-hostname with its IP-address in the URL.

Pros and Cons

Pros:

	the standard port-numbers are used in the http-request, so the port-number is not shown in the URL

	the reverse-proxy can also act as load-balancer

Cons:

	Websocket runs over the intermediate reverse-proxy

	restriction by ssl / https certificates

	the reverse-proxy process might become a bottle-neck

	the equivalence ip-address:port <> hostname:port is broken

The new fact

nodejs [https://nodejs.dev/] offers the capacity of directly serving http-requests from internet. Before nodejs [https://nodejs.dev/], when generating the html-pages with perl [https://www.perl.org/], php [https://www.php.net/] or python [https://www.python.org/], a revers-proxy, such as apache [https://httpd.apache.org/] or nginx [https://nginx.org/], was required.

Notice, that nowadays, some reverse-proxy are implemented with nodejs with some of the following solutions:

	https://github.com/http-party/node-http-proxy

	https://github.com/chimurai/http-proxy-middleware

	https://github.com/expressjs/vhost

	https://github.com/OptimalBits/redbird

	https://github.com/villadora/express-http-proxy

So now, each web-application, implemented with nodejs [https://nodejs.dev/], can directly face internet. The wish to get rid of the reverse-proxy is getting higher. Two options are described below:

	a port-redirection service

	a service-registry

Port-redirection

This solution is implemented in this git-repository.

[image: _images/topology_with_port_redirection.png]
[image: _images/sequence_with_port_redirection.png]
By the second http-request, the four first steps are skipped, as the laptop knows already the IP-address and the port-number of the web-application.

Pros and Cons

Pros:

	each web-application works nicely independently. No central process.

	Websocket and https certificates are served directly

	the equivalence ip-address:port <> hostname:port works as expected

Cons:

	the port-number of the web-application if visible in the URL of the http-request

Service registry

The idea is more futuristic and not implemented yet.

[image: _images/topology_with_service_registry.png]
[image: _images/sequence_with_service_registry.png]
Some more ideas for the service registry:

	hash instead of a service-name

	the service could update its IP-address and port-number dynamically

	the load-balancing could be implemented from the client-side (with a list of servers for each service)

Notes on web-app concepts

Introduction

The world of web technologies is so prolific, that man may lost the direction. From time to time, we have to rethink: Which problematic? Which solutions?

The multi-user application

[image: _images/n_agent_app.png]
How to create one application for multiple users or agents?

[image: _images/mvc_approach.png]
The MVC approach is the historical solution. One big application running on one central server generates html interpreted remotely by browser. The most popular frameworks with the MVC approach are:

	ruby-on-rails [https://rubyonrails.org/]

	sails [https://sailsjs.com/]

[image: _images/micro_service_approach.png]
The micro-service aims at transferring the core of the application on the client-side. The server-side is reduced to the minimum. The backend is split as much as possible in independent parts.

The frontend could be bundled in an electron [https://www.electronjs.org/], nw [https://nwjs.io/] or pwa [https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps] application.

Index

 _images/topology_with_service_registry.png
Service registry

Service name:
- protocol

- IP-address

- port-number

topology with service-registry

_images/typical_sequence.png
server server
NS client reverse-proxy apps

typical sequence

_images/sequence_with_service_registry.png
service ’ server
registry client apps

sequence with service-registry

_images/topology_with_port_redirection.png
DNS-server

topology with port-redirection

_static/comment-bright.png

_images/typical_topology.png
1 buy the two domain-names

DNS-server 1 buy a server

Typical topology

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/mvc_approach.png
i request (get, post) surl__|
- \ DataBase.
e

(web-server)

cient

(browser) o, response (him,css s mages, .) i)

bl

Himitemplates

MVC approach

_images/n_agent_app.png

_images/5_websites.png
I want to create these 5 websites

abe.def beautifully.ovh
app2

www.awesome.ovh
app3

intranet.awesome.ovh
apps.

www.beautifully.ovh
appl

xyz.beautifully.ovh
appd.

5 websites

_images/micro_service_approach.png
e
wm | [on]

micro-service approach

i request (aet, post) surl__| ey

server |

(web-server)

ity response (son)
Satic delvery (i, ¢, ., mages,

_images/sequence_with_port_redirection.png
server server
NS client port-redirection apps

sequence with port-redirection

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to host_registry’s documentation!

 		
 README of host_registry

 		
 Presentation

 		
 Getting started

 		
 Common tasks

 		
 Notes on host_registry

 		
 Presentation

 		
 Typical topology

 		
 Pros and Cons

 		
 The new fact

 		
 Port-redirection

 		
 Pros and Cons

 		
 Service registry

 		
 Notes on web-app concepts

 		
 Introduction

 		
 The multi-user application

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

