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CHAPTER 1

README of host_registry

1.1 Presentation

This repository contains experimental code for replacing reverse-proxy with port-redirection.

More information under readthedocs

Or visit the example page blabla

1.2 Getting started

In a bash-terminal:

git clone https://github.com/charlyoleg/host_registry
cd host_registry
npm i
npm run start_hrs

In a second bash-terminal:

curl -k https://ZZZ.LocalHost:8443/aa

1.3 Common tasks

Update the server:

pm2 stop rediry
git pull
npm run build_hrs
pm2 restart rediry
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Update the access_log-report:

npm run accesslog_html

and visit the page accesslog_report
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CHAPTER 2

Notes on host_registry

2.1 Presentation

This document aims at exploring possibilities to setup a website.

2.2 Typical topology

Let’s say, I want to create 5 websites with the following names:

I have to buy the two domain-names, beautifully.ovh and awesomely.ovh. I also have to buy a server (i.e. a computer
working 24 hours a day and connected to internet), such as vps, where my web-applications and databases will run.

For each domain-name I can register (almost) any sub-domains. For each sub-domain I can register a A-record (IPv4),
a AAAA-record (IPv6) or a CNAME-record (i.e. an alias to an other hostanme) . The wilcard * let you provide an
IP-address to all sub-domains, not explicitly registered.
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With this typical topology, when someone wants to visit one of the websites from his client-laptop, the following
sequence happens:

1. the laptop asks a DNS server the translation of the hostname of the URL

2. the DNS returns the corresponding IP-address

3. the laptop send the http-request to my server

4. the rever-proxy listening to the standard port-numbers forwards the requests

5. the web-application process the request and provides the result to the reverse-proxy

6. the reverse-proxy forward the result to the laptop
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By the second http-request, the two first steps are skipped, as the laptop knows already the IP-address of my server.

The reverse-proxy manages to forward the requests to the right application thanks to the destination-hostname written
in the http-header. So the reverse-proxy won’t work if you replace the server-hostname with its IP-address in the URL.

2.2.1 Pros and Cons

Pros:

• the standard port-numbers are used in the http-request, so the port-number is not shown in the URL

2.2. Typical topology 5
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• the reverse-proxy can also act as load-balancer

Cons:

• Websocket runs over the intermediate reverse-proxy

• restriction by ssl / https certificates

• the reverse-proxy process might become a bottle-neck

• the equivalence ip-address:port <> hostname:port is broken

2.3 The new fact

nodejs offers the capacity of directly serving http-requests from internet. Before nodejs, when generating the html-
pages with perl, php or python, a revers-proxy, such as apache or nginx, was required.

Notice, that nowadays, some reverse-proxy are implemented with nodejs with some of the following solutions:

• https://github.com/http-party/node-http-proxy

• https://github.com/chimurai/http-proxy-middleware

• https://github.com/expressjs/vhost

• https://github.com/OptimalBits/redbird

• https://github.com/villadora/express-http-proxy

So now, each web-application, implemented with nodejs, can directly face internet. The wish to get rid of the reverse-
proxy is getting higher. Two options are described below:

• a port-redirection service

• a service-registry

2.4 Port-redirection

This solution is implemented in this git-repository.
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By the second http-request, the four first steps are skipped, as the laptop knows already the IP-address and the port-
number of the web-application.

2.4.1 Pros and Cons

Pros:

• each web-application works nicely independently. No central process.

• Websocket and https certificates are served directly
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• the equivalence ip-address:port <> hostname:port works as expected

Cons:

• the port-number of the web-application if visible in the URL of the http-request

2.5 Service registry

The idea is more futuristic and not implemented yet.

2.5. Service registry 9
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Some more ideas for the service registry:

• hash instead of a service-name

• the service could update its IP-address and port-number dynamically

• the load-balancing could be implemented from the client-side (with a list of servers for each service)

10 Chapter 2. Notes on host_registry



CHAPTER 3

Notes on web-app concepts

3.1 Introduction

The world of web technologies is so prolific, that man may lost the direction. From time to time, we have to rethink:
Which problematic? Which solutions?

3.2 The multi-user application

How to create one application for multiple users or agents?
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The MVC approach is the historical solution. One big application running on one central server generates html
interpreted remotely by browser. The most popular frameworks with the MVC approach are:

• ruby-on-rails

• sails

The micro-service aims at transferring the core of the application on the client-side. The server-side is reduced to the
minimum. The backend is split as much as possible in independent parts.

The frontend could be bundled in an electron, nw or pwa application.
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Indices and tables

• genindex

• modindex

• search
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