
host𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦
Release 0.1.0

Oct 10, 2020

Contents:

1 README of host_registry 1
1.1 Presentation . 1
1.2 Getting started . 1
1.3 Common tasks . 1

2 Notes on host_registry 3
2.1 Presentation . 3
2.2 Typical topology . 3
2.3 The new fact . 6
2.4 Port-redirection . 6
2.5 Service registry . 9

3 Notes on web-app concepts 11
3.1 Introduction . 11
3.2 The multi-user application . 11

4 Indices and tables 13

i

ii

CHAPTER 1

README of host_registry

1.1 Presentation

This repository contains experimental code for replacing reverse-proxy with port-redirection.

More information under readthedocs

Or visit the example page blabla

1.2 Getting started

In a bash-terminal:

git clone https://github.com/charlyoleg/host_registry
cd host_registry
npm i
npm run start_hrs

In a second bash-terminal:

curl -k https://ZZZ.LocalHost:8443/aa

1.3 Common tasks

Update the server:

pm2 stop rediry
git pull
npm run build_hrs
pm2 restart rediry

1

https://host-registry.readthedocs.io/en/latest/
https://blabla.billet.ovh

host𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.0

Update the access_log-report:

npm run accesslog_html

and visit the page accesslog_report

2 Chapter 1. README of host_registry

https://accyloggy.billet.ovh

CHAPTER 2

Notes on host_registry

2.1 Presentation

This document aims at exploring possibilities to setup a website.

2.2 Typical topology

Let’s say, I want to create 5 websites with the following names:

I have to buy the two domain-names, beautifully.ovh and awesomely.ovh. I also have to buy a server (i.e. a computer
working 24 hours a day and connected to internet), such as vps, where my web-applications and databases will run.

For each domain-name I can register (almost) any sub-domains. For each sub-domain I can register a A-record (IPv4),
a AAAA-record (IPv6) or a CNAME-record (i.e. an alias to an other hostanme) . The wilcard * let you provide an
IP-address to all sub-domains, not explicitly registered.

3

https://www.ovhcloud.com/en/vps/

host𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.0

With this typical topology, when someone wants to visit one of the websites from his client-laptop, the following
sequence happens:

1. the laptop asks a DNS server the translation of the hostname of the URL

2. the DNS returns the corresponding IP-address

3. the laptop send the http-request to my server

4. the rever-proxy listening to the standard port-numbers forwards the requests

5. the web-application process the request and provides the result to the reverse-proxy

6. the reverse-proxy forward the result to the laptop

4 Chapter 2. Notes on host_registry

host𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.0

By the second http-request, the two first steps are skipped, as the laptop knows already the IP-address of my server.

The reverse-proxy manages to forward the requests to the right application thanks to the destination-hostname written
in the http-header. So the reverse-proxy won’t work if you replace the server-hostname with its IP-address in the URL.

2.2.1 Pros and Cons

Pros:

• the standard port-numbers are used in the http-request, so the port-number is not shown in the URL

2.2. Typical topology 5

host𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.0

• the reverse-proxy can also act as load-balancer

Cons:

• Websocket runs over the intermediate reverse-proxy

• restriction by ssl / https certificates

• the reverse-proxy process might become a bottle-neck

• the equivalence ip-address:port <> hostname:port is broken

2.3 The new fact

nodejs offers the capacity of directly serving http-requests from internet. Before nodejs, when generating the html-
pages with perl, php or python, a revers-proxy, such as apache or nginx, was required.

Notice, that nowadays, some reverse-proxy are implemented with nodejs with some of the following solutions:

• https://github.com/http-party/node-http-proxy

• https://github.com/chimurai/http-proxy-middleware

• https://github.com/expressjs/vhost

• https://github.com/OptimalBits/redbird

• https://github.com/villadora/express-http-proxy

So now, each web-application, implemented with nodejs, can directly face internet. The wish to get rid of the reverse-
proxy is getting higher. Two options are described below:

• a port-redirection service

• a service-registry

2.4 Port-redirection

This solution is implemented in this git-repository.

6 Chapter 2. Notes on host_registry

https://nodejs.dev/
https://nodejs.dev/
https://www.perl.org/
https://www.php.net/
https://www.python.org/
https://httpd.apache.org/
https://nginx.org/
https://github.com/http-party/node-http-proxy
https://github.com/chimurai/http-proxy-middleware
https://github.com/expressjs/vhost
https://github.com/OptimalBits/redbird
https://github.com/villadora/express-http-proxy
https://nodejs.dev/

host𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.0

2.4. Port-redirection 7

host𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.0

By the second http-request, the four first steps are skipped, as the laptop knows already the IP-address and the port-
number of the web-application.

2.4.1 Pros and Cons

Pros:

• each web-application works nicely independently. No central process.

• Websocket and https certificates are served directly

8 Chapter 2. Notes on host_registry

host𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.0

• the equivalence ip-address:port <> hostname:port works as expected

Cons:

• the port-number of the web-application if visible in the URL of the http-request

2.5 Service registry

The idea is more futuristic and not implemented yet.

2.5. Service registry 9

host𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.0

Some more ideas for the service registry:

• hash instead of a service-name

• the service could update its IP-address and port-number dynamically

• the load-balancing could be implemented from the client-side (with a list of servers for each service)

10 Chapter 2. Notes on host_registry

CHAPTER 3

Notes on web-app concepts

3.1 Introduction

The world of web technologies is so prolific, that man may lost the direction. From time to time, we have to rethink:
Which problematic? Which solutions?

3.2 The multi-user application

How to create one application for multiple users or agents?

11

host𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1.0

The MVC approach is the historical solution. One big application running on one central server generates html
interpreted remotely by browser. The most popular frameworks with the MVC approach are:

• ruby-on-rails

• sails

The micro-service aims at transferring the core of the application on the client-side. The server-side is reduced to the
minimum. The backend is split as much as possible in independent parts.

The frontend could be bundled in an electron, nw or pwa application.

12 Chapter 3. Notes on web-app concepts

https://rubyonrails.org/
https://sailsjs.com/
https://www.electronjs.org/
https://nwjs.io/
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

13

	README of host_registry
	Presentation
	Getting started
	Common tasks

	Notes on host_registry
	Presentation
	Typical topology
	The new fact
	Port-redirection
	Service registry

	Notes on web-app concepts
	Introduction
	The multi-user application

	Indices and tables

